Low dose effect of bisphosphonates on hMSCs osteogenic response to titanium surface in vitro

نویسندگان

  • N.R. Alqhtani
  • N.J. Logan
  • S. Meghji
  • R. Leeson
  • P.M. Brett
چکیده

Since the 1980s, titanium (Ti) implants have been routinely used to replace missing teeth. This success is mainly due to the good biocompatibility of Ti and the phenomenon of osseointegration, with very early events at implant placement being important in determining good osseointegration. However, enhancing implant performance with coatings such as hydroxyapatite (HA) and calcium phosphate has proved largely unsuccessful. Human mesenchymal stem cells (hMSCs) are the first osteogenic cells to colonise implant surfaces and offer a target for enhancing osseointegration. We previously reported that small doses of bisphosphonate (BP) may play an integral role in enhancing hMSC proliferation and osteogenic differentiation. The aim of this study is to investigate whether small doses of bisphosphonates enhance proliferation and osteogenic differentiation of hMSCs on Ti surfaces, to enhance bone osseointegration and to accelerate wound healing around the implant surface. Our data suggests that treating cells with small doses of BP (100 nM & 10 nM) induces significant hMSC stimulation of osteogenic markers including calcium, collagen type I and ALP compared to control group on titanium surfaces (P < 0.05). In addition, cell proliferation and migration were significantly enhanced on titanium surfaces (P < 0.05).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified titanium surfaces promote accelerated osteogenic differentiation of mesenchymal stromal cells in vitro.

Titanium (Ti) is the material of choice for dental and orthopaedic implants due to its highly biocompatible nature. Modification of the implant surface, either topographically (as roughness) or chemically, can promote accelerated osteogenesis in vivo and greatly increase bone-implant contact and bonding strength. In this paper, we sought to characterise the cellular and molecular responses of h...

متن کامل

The Effects of Iron Oxide Nanoparticle on Differentiation of Human Mesenchymal Stem Cells to Osteoblast

Introduction: IIron oxide nanoparticles (IO NP) have an increasing number of biomedical applications. To date, the potential cytotoxicity of these particles remains an issue of debate. Little is known about the cellular interaction or toxic effects of IO NP on differentiation of stem cells. The aim of the present study was to investigate the possible toxic role of different doses of IO NP in di...

متن کامل

Preconditioning Human Mesenchymal Stem Cells with a Low Concentration of BMP2 Stimulates Proliferation and Osteogenic Differentiation In Vitro

Clinical trials using bone morphogenetic protein-2 (BMP2) for bone reconstruction have shown promising results. However, the relatively high concentration needed to be effective raises concerns for efficacy and safety. The aim of this study was to investigate the osteogenic effect of an alternative treatment strategy in which human bone marrow-derived mesenchymal stem cells (hMSCs) are precondi...

متن کامل

Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro

BACKGROUND Patterning medical devices at the nanoscale level enables the manipulation of cell behavior and tissue regeneration, with topographic features recognized as playing a significant role in the osseointegration of implantable devices. METHODS In this study, we assessed the ability of titanium-coated hemisphere-like topographic nanostructures of different sizes (approximately 50, 100, ...

متن کامل

بررسی خواص ضدالتهابی بیس فسفونات ها (مقاله مروری)

Bisphosphonates are currently used in metabolic disorder of bone however, there have been few studies that reviewed the role of anti-inflammatory and immune modulatory effect of this agent in in-vivo. Bisphosphonates were divided in two classes regarding the structure and mechanism, including amino and non-amino bisphosphonates. The effect of bisphosphonates on cytokine related to in-vitro wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017